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ABSTRACT 

The size of the “sweet spot” is one measure of tennis 
racquet performance.  In terms of vibration, the sweet spot 
is determined by the placement of nodal lines across the 
racquet head.  In this study, the vibrational characteristics 
of a tennis racquet are explored to discover the size and 
location of the sweet spot.  A numerical model of the 
racquet is developed using finite element analysis and the 
model is verified using the results from an experimental 
modal analysis.  The effects of string tension on the 
racquet’s sweet spot and mode shapes are then 
quantified.  An investigation is also carried out to 
determine how add-on vibrational dampers affect the 
sweet spot.   

NOMENCLATURE 

Tpq Transmissibility of output point p with 
respect to input point q 

Hpq Frequency Response Function of impact 
at point p received at point q 

Hqq Frequency Response Function of drive 
point 

[Vi]  ith eigenvector from experimental data 
[Vj]  jth eigenvector from numerical solution 
[H]  Frequency Response Function matrix 
ω  Frequency 
φ Eigenvector normalized to unit modal 

mass 
λ  Diagonal matrix of natural frequencies 
Ι  Identity Matrix 
F(ω)  Fourier transform of forcing function 
 
 
1 INTRODUCTION 

Tennis players have always sought the perfect tennis 
racquet.  Tennis players often refer to a point or area in 

the racquet called the “sweet spot”. In terms of 
performance, the sweet spot plays an important role in 
tennis racquet design.  Since the early 1970s, tennis 
racquets have been designed to increase or expand the 
area of the sweet spot in an effort to transmit less vibration 
to the tennis player’s hand. This task has kept tennis 
racquet manufacturers busy for nearly three decades. 

According to tennis players, the “sweet spot” is where, 
when the ball is hit in that point or area, minimal vibration 
is transmitted to the player’s hand and forearm and, as a 
consequence, the player is almost unaware that the 
impact has occurred.  Although the sweet spot’s definition 
is based primarily on tennis players’ experience, several 
studies have shown that the sweet spot can be related to 
three different physical phenomena [1] [2] [3]. Each 
phenomenon is associated with a different location on the 
racquet.  The first racquet point related to the sweet spot 
is the center of percussion.  The center of percussion of a 
tennis racquet is the point where the translational and 
rotational forces cancel each other, resulting in minimal 
sensation of hitting the ball [3]. The second location of the 
sweet spot corresponds to the maximum coefficient of 
restitution on the racquet head.  The point of the maximum 
coefficient of restitution is where the ball, if released in free 
fall towards the racquet head, would have the maximum 
rebound.  Hitting the ball with this spot will provide the ball 
with more rebound than any other spot on the racquet 
head.  The third point on the racquet associated with the 
sweet spot is related to the concept of nodal lines across 
the racquet head.  The nodal lines are the lines or zones 
of zero displacement in the mode shapes when the 
racquet is excited.  When the racquet is hit on a point 
along these nodal lines, the racquet, theoretically, would 
not experience any vibration from that mode and, 
consequently, the player would not feel any impact or 
vibration on his hand.  By this definition, the sweet spot 
occurs at the crossing of several nodal lines on the 
racquet face.  



This paper explores and analyzes the vibration 
characteristics of a tennis racquet.  A tennis racquet was 
tested by hitting every other string intersection as well as 
selected points on the racquet frame.  The response 
accelerations caused by each hit were measured for trials 
with and without commercial damper suppression devices.  
Using commercial experimental modal analysis software, 
ME’scope, modal analysis was performed in order to 
identify the mode shapes of the racquet.  A commercial 
finite element code, ABAQUS/CAE, was used to model 
the structure of the tennis racquet.  The finite element 
model was refined to match the mode shapes and 
frequencies identified previously from the experimental 
results.  Finally, a transmissibility study was performed in 
order to investigate the real effects of the vibration 
suppression devices on the tennis racquet.  

2 EXPERIMENTAL PROCESS 

The purpose of the experiment was to identify the different 
mode shapes and natural frequencies of the racquet and 
to discover the impact that different kinds of dampers have 
on the racquet’s vibrational characteristics.  To do this, the 
tennis racquet was subjected to roving impact testing, 
hitting the frame and every other string intersection while 
the accelerations of the tennis racquet frame were 
recorded at three fixed locations. 

2.1 Test Racquet Description 

The racquet tested was a Junior JR-10 model made of a 
hollow aluminum frame and nylon monofilament strings.  
The frame has a constant cross-section but varying 
curvature. The vertical strings were not evenly spaced; 
rather, they were closer together in the middle of the 
racquet.  The distances between horizontal strings were 
approximately the same.  The racquet measured 60.9-cm 
(24-in.) from the top of the head to the bottom point of the 
handle.  The head of the racquet was 25.7-cm-wide (10.1-
in-wide) and the handle measured 14.3-cm (5.62-in) long, 
3.15-cm (1.25-in) wide, and 3-cm (1.18-in) depth.  Figure 1 
shows the racquet with its dimensions.  The racquet tested 
was a used racquet, so the string tension was much lower 
than the 200-267 N (45-60 lbf) typical for a new racquet.  
The actual string tension was estimated to be 31-36 N (7-8 
lbf). 

2.2 Vibration Suppression Devices Description 

In order to determine the effect of vibration suppression 
devices, two different commercial dampers, shown in 
Figure 2, were used to test the racquet.  Damper 1 and 
Damper 2 were placed between the lower strings of the 
racquet.  Figure 1 shows the position of the commercial 
dampers. 

2.3 Test Setup/Data Acquisition 

Free-free boundary conditions are a good model for a 
player gripping the handle, because the natural 
frequencies for both cases are very similar [1].  For 
experimental testing, the racquet was suspended by the 

handle using an approximately 1 meter-long elastic cord in 
order to simulate free-free boundary conditions around the 
racquet as shown in Figure 3. Measurements were taken 
normal to the plane of the racquet at selected points on 
the strings, frame, and handle. 

 

Figure 1. Racquet model dimensions 

 

Figure 2. Vibration suppression devices 

 

Figure 3. Racquet test configuration 



The tennis racquet was instrumented with 3 PCB 
Piezotronics 352C22 accelerometers. The nominal 
sensitivity and range of the accelerometers were 10mV/g 
and +/- 500 g respectively.  The accelerometers were 
placed with wax at different locations on the tennis racquet 
frame (See Figure 4).  Placing an accelerometer on the 
strings decreased the natural frequency of the string 
modes by 8%.  Consequently, accelerometers were 
placed solely on the frame to prevent these effects on the 
strings. Unfortunately, this placement made accurate 
estimates of several string modes difficult, because their 
nodes lay along the frame.  A PCB Piezotronics 086D80 
impact hammer was used to excite the tennis racquet.  
The force transducer on the impact hammer had a range 
of 0-222 N (0-50 lbf) and nominal sensitivity of 2.25 mV/N 
(100mV/lbf). 

 

Figure 4. Accelerometer locations 

Force and acceleration data were collected by means of a 
Dactron four-channel Photon Dynamic Signal Analyzer 
analysis data acquisition system using Dactron’s RT Pro 
Signal Analysis and Waveform software controlled from a 
Dell laptop PC.  Data were recorded for 1.364 seconds at 
a rate of 2048 points per sample, corresponding a 
frequency of 600 Hz.  A Force/Exponential window was 
applied to these measurements.  Five runs were averaged 
to calculate the racquet frequency response functions 
(FRF’s).  The FRF’s were exported in ASCII Universal File 
Format for analysis in ME’scope modal analysis software. 
ME’scope was used to extract the modal parameters of 
frequency, damping, and shape. 

2.4  Test Variations 

During preliminary testing, the natural frequencies of the 
racquet’s string modes varied by as much as 8% from day 
to day.  The most likely cause of these variations was  a 
change in the ambient temperature and humidity, causing 
changes to the string tension.  Experiments were 

conducted in a room without climate control, resulting in 
day-to-day environmental variations.  Another cause for 
variations could be shifts in the racquet strings, resulting in 
a slightly different racquet shape.   

In order to reduce the effects of the frequency shifts, each 
test was completed in a single sitting.  When testing the 
racquet with the vibration dampers, a single measurement 
was taken without a vibration damper attached, to 
calibrate the random frequency shifts. 

2.5 Test Results 

Because the tests were conducted on different days, the 
natural frequencies of the undamped racquet varied 
between tests.  By comparing the calibration FRF’s from 
the damper tests with the FRF’s from the undamped 
racquet test, it was shown that the natural frequencies of 
the undamped racquet varied by as much as 2.3% for this 
test data. These shifts only affected modes associated 
with the racquet strings.  Modes confined to the frame 
were unaffected by frequency shifts.  

The experimental data were imported into ME’scope  in 
order to estimate mode shapes and natural frequencies.  
ME’scope  uses parametric curve fit estimation, in this 
case a single reference global polynomial method, to find 
mode shapes and natural frequencies from the FRF’s.  
Once mode shapes and natural frequencies have been 
found, ME’scope  animates the resulting deformations of 
the structure. 

The addition of dampers changed the mode shapes of the 
racquet significantly.  A summary of the natural 
frequencies and percent critical damping for the 
undamped racquet can be seen in Table 1.  Table 2 
shows the natural frequencies and percent critical 
damping for the racquet when damped with Damper 1.  
Table 3 shows the results for the racquet when damped 
with Damper 2. 

Table 1: Modal Analysis Results for 
Undamped Racquet 

Frequency 
(Hz) 

% Critical 
Damping Mode 

130 1.17 Frame Bending 
246 0.368 String Percussion 
303 0.653 Frame Torsion 
316 1.31 Saddle 
387 0.277   
398 0.334   
489 1.12 2nd Frame Torsion 
492 0.218   
524 0.289   
536 0.31   
575 0.323   

 



Table 2: Modal Analysis Results for 
Racquet with Damper 1 

Frequency 
(Hz) 

% Critical 
Damping Mode 

126 2.51 Frame Bending 
195 0.654 Damper Percussion 
265 0.447 String Percussion 
307 1.83 Frame Torsion 
312 1.29 Saddle 
394 0.43   
408 0.483   
437 1.12   
484 0.773 2nd Frame Torsion 
508 1.00   
530 --   
543 0.456   
571 0.623   
596 0.612   

 

Table 3: Modal Analysis Results for 
Racquet with Damper 2 

Frequency 
(Hz) 

% Critical 
Damping Mode 

127 1.51 Frame Bending 
195 0.601 Damper Percussion 
269 0.43 String Percussion 
286 0.727 Damper Torsion 
306 0.701 Frame Torsion 
313 1.27 Saddle 
354 0.823   
397 0.819   
419 0.69   
436 0.347   
483 0.703 2nd Frame Torsion 
559 0.285   
565 0.321   
607 0.282   

 

3 FINITE ELEMENT ANALYSIS 

A finite element (FE) model of the tennis racquet was 
developed in order to simulate the effects of increased 
string tension on the mode shapes and frequencies.  The 
finite element analysis was performed using the 
ABAQUS/CAE.  The frame and strings were modeled 
using beam elements.  The string nodes were coupled, 
making the string intersections solid connections instead 
of friction joints.  The model was refined to match the 
results from the tennis racquet with no damper on it.  
Having achieved the desired results for the FE model, the 
commercial vibration dampers were modeled and added in 

between the bottom strings of the existing racquet model.   
Finally, the string tension was increased. 

4 ANALYSIS OF RESULTS 

4.1 Experimental Modal Analysis 

The addition of dampers to the tennis racquet changed the 
experimental natural frequencies and mode shapes of the 
string modes but had almost no effect on the frame 
modes. 

Undamped Racquet 

Modal analysis of the undamped racquet revealed 11 
modes within the first 600 Hz. These modes included both 
modes confined to the frame and modes confined to the 
strings.  Frame modes had a higher percent critical 
damping (0.653%-1.31%) than string modes (0.218%-
0.368%).  This difference in damping can be explained by 
the difference in materials, aluminum for the frame and 
nylon for the strings. 

Damper 1 

The addition of Damper 1 to the tennis racquet resulted in 
notable changes to the string modes of the system. It 
increased the frequency of the modes by as much as 
7.7%.   The damper had no effect on the frame modes of 
the racquet.  Furthermore, the damping of the system was 
insensitive to the damper.  This results indicates that the 
device is not a true vibration damper per se, but rather a 
vibration suppressor. 

Damper 1 split the first string percussion mode of the 
undamped system, located at 246 Hz, into two modes 
surrounding the undamped percussion mode.  The first, a 
damper percussion mode located at 195 Hz, involves 
motion of the dampers and nearby strings.  The second is 
a lower intensity string percussion mode, located at 265 
Hz.  The damper also changed the shapes of the higher 
frequency modes, as well as adding several new modes. 

Damper 2 

Like Damper 1, Damper 2 had a significant effect upon the 
natural frequencies and mode shapes of the string modes. 
The damper changed the string mode shapes to the extent 
that comparing modes is almost impossible.  For example, 
the undamped racquet has a string mode at 387 Hz.  
Similar mode shapes appear twice in the racquet with 
Damper 2, at 354 Hz and 436 Hz.  The damper had no 
effect on the frame modes or the critical damping of the 
system. 

Damper 2 also split the first string mode of the undamped 
racquet into two lesser modes.  The first, again a damper 
percussion mode, is located at 195 Hz.  The second, a 
reduced string percussion mode, is located at 269 Hz.  
Damper 2 had a greater effect on the higher frequency 
mode shapes than Damper 1.  For Damper 1, seven 
modes can be correlated with the undamped mode 



shapes.  For Damper 2, however, only six mode shapes 
can be correlated. 

4.2 Transmissibility 

Although the changes in mode shapes show some of the 
effects of the vibration dampers, a more useful and 
quantitative comparison involves the transmission of 
vibrations through the racquet.  Commercial vibration 
dampers are marketed as reducing harmful vibrations, 
which cause tennis elbow.  The obvious question, then, is 
whether they really reduce vibrations?  As a partial answer 
to this question, the transmissions of vibrations from an 
impact on the sweet spot to several points on the handle 
of the racquet have been calculated.  These points, 
numbers 311, 312, 313, and 314, can be seen in Figure 4.  
The transmissibility of vibrations, T , is calculated by the 
following equation:  

pq

pq
pq

qq

H
T

H
=            (1) 

where  is the FRF for striking the racquet at the 

handle and receiving at the sweet spot and  is the  

FRF for the drive point measurement at the sweet spot. 

pqH

qqH

The vibration dampers do have an effect on the 
transmissibility from the sweet spot to the handle, as can 
be seen in Figure 5.  In general, they reduce higher 
frequency vibrations, but they increase vibrations at lower 
frequencies.  Both dampers reduce a peak at 530 Hz.  
This peak is reduced from almost 15% transmissibility in 
the undamped racquet to 2% transmissibility for Damper 1 
and no transmissibility for Damper 2.  This reduction in 
vibrations comes at a price, though.  Both dampers 
increase the transmissibility between 180 Hz and 330 Hz.  
The undamped racquet transmits 8% of the vibrations at 
320 Hz.  The racquet with both dampers transmits more; 
Damper 1 has transmissibility near 15% and Damper 2 
has a transmissibility of 10%.  In addition, both dampers 
have several other peaks between 180 Hz and 330 Hz, 
while the undamped racquet has none.  

The transmissibilities of the damped systems have fairly 
large uncertainties associated with them.  These 
uncertainties come from the fact that several string modes 
have nodes located on the frame where the 
accelerometers were attached.  As a result, the magnitude 
of these modes is unclear when curve fitting.  By choosing 
different magnitudes, the transmissibility of Damper 1 and 
Damper 2 vary between 10% and 25% in the 180 Hz to 
330 Hz range.  Although the actual value of the 
transmissibility is uncertain, it is definitely higher than the 
undamped transmissibility. 

4.3 Correlation of FE model 
 
The Modal Assurance Criteria (MAC) was used to 
characterize the similarity between the FE model and the 
experimental results.   
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Figure 5. Transmissibility of points on racquet handle. 

,i jMAC , indicating the similarity between the  

eigenvector of the experimental data and the numerically 
determined  eigenvector is calculated using the 
following equation:  

thi

thj

         
[ ] [ ]( ) [ ] [ ]( )

2*
*

, *** *

V Vi j
i j

V V V Vi i j j

     
=MAC               (2) 

where  indicates the eigenvector of the iV
thi  mode of the 

experimental system, and the V  components indicate the 
numerically calculated eigenvectors.  A correlation 
coefficient of 1 indicates that the experimental and 
numerically determined modes are the same.  Conversely, 
a coefficient approaching 0 indicates no correlation.  An 

j



ideal MAC is a square identity matrix.  This would indicate 
excellent correlation of each FE mode with the 
corresponding experimentally determined mode, as well 
as no correlation between modes of different designations.    
 
 
The first step in applying the MAC was to reduce the FE 
output of all the degrees of freedom to the points at which 
experimental data were collected.  The reduction was 
performed using a MATLAB script.  
 
Figure 6 is a 3-D bar plot of the MAC for the undamped 
model.  A correlation coefficient of greater than 0.95 was 
achieved with the undamped model for modes 1, 2, 5, and 
6.   Mode switching, a common phenomenon when 
modeling real structures, occurred for modes 3 and 4 as 
well as 7 and 8.  There were several coefficients above 
0.7, which would ideally have been 0.  This was possibly 
due to the assumptions made in modeling the string 
crossings.   
 
Similar results were obtained for both damped models.       
 
 

Figure 6. Correlation of Undamped model 
 
4.4     Simulation of higher Tension 
 
The string tension of the actual racquet was qualitatively 
observed to be lower than that of an unused racquet.  This 
observation is supported through the correlation of the 
numerical model, which used a string tension of less than 
24 N.  A numerical analysis was performed to determine 
the effect of string tension on the frequencies and shape 
of each mode.   Correlation was calculated for each of the 
modes and a correlation of greater than 0.9 was chosen 
as the criteria for mode shape similarity.  The difference in 
frequency for similar mode shapes was divided by the 
frequency of the low-tension mode to determine the 
frequency shift.  As shown in Tables 4 through 6, frame 
modes were relatively unaffected by changes in string 
tension; however, the frequency of string modes, such as 
the first percussion mode, were increased. 
 

Table 4. Effect on modal frequencies 
of string tension of undamped model. 

23 N 100 N Correlation Frequency 
Shift 

1* 1* 0.996 -1.08% 
2 4 0.975 84.5% 
3* 2* 0.949 -3.08% 
4* 3* 0.974 -3.48% 
5 9 0.994 93.1% 
6 8 0.998 89.1% 
8 11 0.997 89.3% 
9 12 0.93 84.6% 

10 13 0.995 88.5% 
* indicates frame modes 

 
 

Table 5.  Effect of string tension on 
modal frequencies of model damped 

with Damper 1. 

23 N 100 N Correlation Frequency 
Shift  

1* 1* 0.986 0.86% 
3 4 0.917 78.3% 
5* 3* 0.973 -3.48% 
6 8 0.996 89.7% 
7 9 0.987 89.2% 

* indicates frame modes 
 
 

Table 6. Effect of string tension on 
modal frequencies on model damped 

with Damper 2. 

23 N 100 N Correlation Frequency Shift 

1* 1* 0.964 0.32% 
2 4 0.95 74.9% 
3 5 0.987 87.5% 
4 6 0.907 85.9% 
7 11 0.997 66.2% 
8 13 0.926 68.0% 

* indicates frame modes 
 
 
The numerical model was also used to gain an 
understanding of how string tension affects the 
transmissibility of vibrations to the handle.  Transmissibility 
was calculated using Equation 1; however, the [H] terms 
were calculated numerically as: 
 

( )[ ] { } [ ] { } ( ){ ωφωλφω FH T12 −Ι−= }          (3) 
 



where [ ]φ  is the eigenvectors normalized to unit modal 

mass, and [ ]λ  is the diagonal natural frequency matrix 

both of which were exported from ABAQUS after a 
frequency extraction load step.   was an equally 
distributed 810 element vector created from 0-650 Hz.  

 was the Fourier transform of  applied only 
at the node corresponding to point 164, at the center of 
the racquet face.  The rest of the matrix were zeros.    

is the  row of the H matrix, and 

ω

cos

H

(F ω)

thp

( )tω

qq

pqH

 is the  row.   

This model neglected internal damping, so the magnitude 
of the numerically calculated transmissibility doesn’t 
correspond well with the experimental results, but trends 
were analyzed qualitatively.  

thq

 
Like the string mode shapes, the increased transmissibility 
peaks occurred at higher frequencies when greater string 
tension was modeled.  As can be seen in Figure 7, the 
numerical analysis of the add-on dampers concurs with 
the experimental data in that the transmissibility peaks 
decrease in frequency after addition of either damper.   
Unlike the experimental results, the numerical model 
predicted a transmissibility decrease of about 70% when 
Damper 1 was applied to the loose string racquet model. 
 

 

 
Figure 7. Numerically calculated transmissibility for 23 
N and 100 N. 

5 CONCLUSIONS 

Using the nodal lines definition of the sweet spot, the 
location of the sweet spot is located at the anti-node of the 
first string percussion mode.  This anti-node is also very 
close to the node of the first frame bending mode.  
Consequently, most of the energy goes into the strings 
and is then returned to the ball.  In addition, because the 
frame is not excited, the player feels few vibrations at the 
handle. 

The commercial vibration dampers were seen to have a 
varied influence on vibrations at the handle.  Although they 
damp out vibrations near 500 Hz, they cause more 
vibrations to be transmitted between 180 Hz and 330 Hz.  
This result holds true for the experimental racquet as well 
as the FE model of higher string tension. 

Using the FE model for higher string tension, the string 
mode shapes do not change.  The frequencies they occur 
at increase by almost 90%, but the shapes themselves 
stay the same. 
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